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A new approach for rapid detection of nearby thresholds  
in ecosystem time series
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Massive changes to ecosystems sometimes cross thresholds from which recovery can be difficult, expensive and slow. 
These thresholds are usually discovered in post hoc analyses long after the event occurred. Anticipating these changes 
prior to their occurrence could give managers a chance to intervene. Here we present a novel approach for anticipating 
ecosystem thresholds that combines resilience indicators with Quickest detection of change points. Unlike existing 
methods, the Quickest detection method is updated every time a data point arrives, and minimizes the time to detect 
an approaching threshold given the users’ tolerance for false alarms. The procedure accurately detected an impending 
regime shift in an experimentally manipulated ecosystem. An ecosystem model was used to determine if the method 
can detect an approaching threshold soon enough to prevent a regime shift. When the monitored variable was directly 
involved in the interaction that caused the regime shift, detection was quick enough to avert collapse. When the 
monitored variable was only indirectly linked to the critical transition, detection came too late. The procedure is useful 
for assessing changes in resilience as ecosystems approach thresholds. However some thresholds cannot be detected in 
time to prevent regime shifts, and surprises will be inevitable in ecosystem management.
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Recognition of an incoming nuclear missile is a case where 
fast detection is needed to address an impending significant 
event. During the Cold War, scientists developed a family of 
methods for quickest detection of change points, such as 
appearance of a missile on radar or a submarine on sonar 
(Shiryaev 2010). These methods, known as Quickest  
detection (QD) methods, employ a likelihood ratio for two 
models, one for the status quo (‘no submarine’) and one for 
a new and different situation (‘submarine detected’). At each 
time series step, the model likelihoods and their ratio are 
updated. When the updated likelihood ratio exceeds a detec-
tion threshold, an alarm is triggered. QD methods minimize 
the time to detection of a change point, given the user’s  
tolerance for false alarms. They are widely used to screen  
for changes in military activities, industrial processes, and 
financial systems (Lai 1995) and recently have been used for 
early detection of cyber attacks (Tartakovsky et al. 2006).

In ecology, a growing literature addresses indicators of 
approaching thresholds, or impending loss of resilience, in 
ecosystems. As an ecosystem moves toward a critical 
threshold, the stability basin flattens out so that perturba-
tions have larger effects, recovery from perturbations takes 
longer, and variance increases (Carpenter and Brock 2006). 
Rising variance is directly related to slower recovery from 
disturbance as the ecosystem approaches the threshold 

(Scheffer et  al. 2009). In addition, variance can increase 
when shocks cause brief excursions into a different stabil-
ity basin, a phenomenon known as flickering (Brock and 
Carpenter 2010, Wang et  al. 2012). Rising variance  
and autocorrelation prior to critical transitions is well- 
established in models and has been demonstrated for labo-
ratory microcosms and whole ecosystems (Dakos et  al. 
2008, Drake and Griffen 2010, Carpenter et al. 2011, Dai 
et  al. 2012, Seekell et  al. 2012, Wang et  al. 2012, Pace 
et  al. 2013). It is important to note that rising variance 
and autocorrelation occur for many, but not all large  
transitions in ecosystems (Scheffer et al. 2009). For exam-
ple, a completely external disturbance such as an earth-
quake, volcanic eruption, tsunami or asteroid strike is not 
expected to have ecological early warnings. Less obviously, 
some types of critical transitions do not provide early 
warnings (Scheffer et  al. 2009, Hastings and Wysham 
2010). On the other hand, some massive ecological regime 
shifts that are not critical transitions are preceded by rising 
variance and autocorrelation (Kéfi et al. 2012). Nonethe-
less, many important kinds of ecosystem regime shifts, 
such as those involved in eutrophication, fisheries collapse, 
rangeland degradation, desertification and others involve 
critical transitions that can be announced by early warning 
signals (Scheffer et al. 2012).



291

Statistical time-series analyses of the distance to thresh-
olds have used several different approaches (Dakos et  al. 
2012). Approaches that reconstruct the potential surface 
(Livina and Lenton 2007) are data-intensive but reveal the 
shape of the alternate states when data are sufficient. In con-
trast, non-parametric methods to estimate variance or eigen-
values make no assumption about the underlying process, 
and also require rather large data sets (Brock and Carpenter 
2012). Other approaches involve comparing two or more 
models for the observed time series using likelihood statistics 
(Boettiger and Hastings 2012b, Ives and Dakos 2012). 
Conditional heteroscedasticity, a persistent form of variance 
in time series, rises to statistically significant levels as a  
critical threshold is approached (Seekell et al. 2012). All of 
these methods have important uses (Dakos et al. 2012) but 
none are designed for decision making ‘online’ meaning 
automated, instantaneous and in real time. In online deci-
sion systems, statistics are updated recursively each time a 
data point is collected. In ecology, automated sensor systems 
that record data at frequencies ranging from seconds to hours 
are increasingly common (Porter et  al. 2012). An alarm is 
triggered when a statistical threshold is crossed, and a deci-
sion maker acts on the alarm to change some aspect of 
ecosystem management. QD methods are designed for use 
online. In the case of early warning indicators of critical 
transitions, this paper uses QD methods to detect the statis-
tical signatures of an approaching critical transition, and not 
the transition itself.

For online decision making to be useful, the alarm and 
subsequent management action must be capable of chang-
ing the ecosystem to avoid an unwanted outcome. If an 
approaching threshold is detected in an ecosystem under 
stress, and the stress is mitigated, does the ecosystem recover 
or is the threshold crossed anyway? Previous simulation-
model studies of lake eutrophication (Contamin and  
Ellison 2009) and management of fish habitat and harvest 
(Biggs et al. 2009) show that both recovery and collapse are 
possible.

Application of QD methods to problems of ecosystem 
thresholds thus raises two questions. How quickly can the 
QD methods discern the changing indicators? If a change is 
detected, can management interventions prevent the regime 
shift, or will the inertia of ecosystem dynamics carry the eco-
system past the threshold? Here we address these questions 
using field observations of an ecosystem going through a 
regime shift and an ecosystem model of critical transitions in 
a food web.

Methods

Quickest detection

The QD method employs two probability densities: f(xi) 
which is the density of the ith observation of x in the  
original state of the system, and g(xi) which is the density 
of the ith observation of x after the early warning has 
arrived. The time series xi can be measurements of any  
ecological variable, or any statistic such as the variance or 
autocorrelation of an ecological variable. The likelihood 
ratio in a given time step is

 i
g i

i
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x
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The procedure (Polunchenko and Tartakovsky 2012)(section 
4, Eq. 22 and 23) is based on the stopping time ΨA

   A inf ( : )n 1 R An 	
(2)

In plain English, n is the first time step where Rn exceeds A, 
and ΨA is a random variable with values taken by this time 
step. Infimum or ‘inf ’ is the smallest value of positive non-
zero n that has Rn greater than or equal to A. Here A is the 
detection threshold. A can be chosen using the expected 
number of time steps to a false positive, given the user’s toler-
ance of false alarms (Pollak and Tartakovsky 2009). In prac-
tice, we selected A to be within the range of A values where 
time to first alarm is not sensitive to A, according to sensitiv-
ity analyses presented in the Results.

The detection statistic (Shiryaev–Roberts statistic) Rn is 
given by the recursion

R n   ( )1 1R n n 	 (3)

Thus Rn is a likelihood ratio that is updated using the 
new observation that arrives at each time step. The deri-
vation of Eq. 3 subject to Eq. 2 is explained in Shiryaev 
(2010) and Polunchenko and Tartakovsky (2012). The 
method is optimal in the sense that it minimizes the aver-
age delay to detection of an event, where the average  
time to false alarm is greater than some specified bound 
(Pollak and Tartakovsky 2009)(section 2, theorem 1 and 
surrounding text).

This process, called the Quickest detection or Shiryaev– 
Roberts procedure, requires three user-defined components: 
the detection threshold A and the densities f(xi) and g(xi). 
We define these components on a case-by-case basis below. 
For sequential monitoring, an ‘alarm’ is recorded every time 
Rn exceeds A. Rn is reset to 1 in the time step following the 
alarm (Polunchenko and Tartakovsky 2012).

Field time series

To evaluate the behavior of the QD method with field data, 
we used the 2008–2011 daily chlorophyll time series for a 
whole-lake experiment described by Carpenter et al. (2011). 
In the field experiment, a critical transition was triggered 
by gradually adding individuals of a top predator species 
(largemouth bass Micropterus salmoides) to a lake food web 
that was dominated by prey fishes at the beginning of the 
experiment. The critical transition resulted from a well-
known trophic cascade in which largemouth bass became 
dominant, prey fish became rare, zooplankton biomass 
shifted to large-bodied animals and chlorophyll concentra-
tion declined (Carpenter and Kitchell 1993). The manipu-
lated ecosystem (Peter Lake) was monitored in parallel with 
an undisturbed reference ecosystem (Paul Lake) that was 
dominated by largemouth bass throughout the experiment. 
Previous post hoc analyses indicate that early warnings 
began during summer 2009 and the regime shift was com-
plete or nearly so by late summer of 2010 (Carpenter  
et al. 2011, Seekell et al. 2012, Pace et al. 2013).
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The QD method was applied to the time series of stan-
dard deviations of log-transformed daily chlorophyll com-
puted using 28 day rolling windows (Carpenter et al. 2011). 
We set A  1000, which was chosen to be within the range 
where the time to first alarm is not very sensitive to A 
(Results). The likelihood of the manipulated lake’s observed 
standard deviations was calculated for two distributions. 
One is the distribution of standard deviations in the original 
state, and the other is the distribution in the new state. These 
two sets of probabilities are f(xi) and g(xi), respectively  
(Eq. 1). Functions for the probability densities were the  
normal distributions
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Normal probability plots indicated that the normal distribu-
tion was a reasonable approximation. The means (m) of  
distributions for the two states are calculated by making 
adjustments (Δf and Δg) to the standard deviation of chloro-
phyll in the reference lake (St,C). Pre-manipulation data 
showed that the standard deviation of chlorophyll in the 
manipulated lake (St,M) was less than that of the reference 
lake (St,C) (Carpenter et  al. 2011, Supplementary material 
Appendix A1 Table A2). During the critical transition, the 
standard deviation of chlorophyll in the manipulated lake 
increased relative to the reference lake as expected from  
theory and models (Carpenter et  al. 2008, 2011, Scheffer 
et al. 2009). Thus Δf adjusts m to approximate the standard 
deviation of chlorophyll in the original state of the manipu-
lated lake, and Δg adjusts m to approximate the standard 
deviation of chlorophyll in the new state of the manipulated 
lake. To estimate the parameters of the f() function, Δf and sf 
were calculated for the first 50 data points, and the estimate 
of s was rounded upward to allow for wider fluctuations in 
the future. Thus we set Δf  0.3 and sf  sg  0.1. We arbi-
trarily set Δg  0.12 to represent a substantial increase in the 
standard deviation.

We chose this specification of the densities f(xi), g(xi) 
based upon experience with computer experiments and ease 
of implementation on field data. The references for the  
QD method discuss general issues of choosing f(xi) and g(xi) 
(Pollak and Tartakovsky 2009, Polunchenko and Tartak-
ovsky 2012). For interested readers we present a second 
analysis based on autocorrelation in Supplementary Materi-
als Appendix A1.

The field data were used to evaluate the sensitivity of the 
QD method to choice of A and parameters of the f(xi) and 
g(xi) functions. The day of first alarm was computed for 
ranges of A, Δf and Δg and sg.

Model time series

Even if QD triggers an alarm before a tipping point is 
reached, an immediate management intervention may not 
prevent the regime shift. To test whether the alarm from  
QD comes soon enough to prevent a regime shift, we used a 
food web model. In the model, a top predator fish (or pisci-
vore) at the higher of two alternate stable equilibria is har-
vested at gradually increasing rates. If the harvest rate crosses 

a threshold, then the piscivore biomass collapses to a low 
stable state. In our simulations, the harvest rate was gradu-
ally increased until an alarm occurs, and then the harvest rate 
is dropped to zero. To evaluate the success of the interven-
tion, we then determined whether the piscivore biomass 
remained at the high stable state or dropped to the low stable 
state.

The model is also capable of simulating the critical transi-
tion caused by stocking adult piscivores starting from a low 
population of piscivores, similar to the whole-lake experi-
ment of Carpenter et al. (2011). However, preventing this 
critical transition is not usually relevant to management, 
whereas preventing overharvest is a common problem in 
fisheries management. Moreover, the critical transition 
caused by stocking adult piscivores is not likely to be revers-
ible by simply ending the stocking. Reproduction by adult 
piscivores already stocked has the potential to carry the eco-
system past the critical point. Therefore, simulation of har-
vest management provides a more stringent test of the early 
warning system.

The model (Supplementary Material Appendix A2) rep-
resented ecosystem changes in a lake food web as harvest 
rates of the piscivore (top predator) are increased gradually 
(Carpenter et  al. 2008). The model represents biomass 
dynamics of adult and juvenile piscivores, prey fish, zoo-
plankton and phytoplankton. It was calibrated using  
14 years of data from whole-lake experiments in five lakes 
(Carpenter and Kitchell 1993, Carpenter et al. 2001). The 
model exhibits rising variance and autocorrelation before  
the critical transition (Carpenter et  al. 2008, Brock and  
Carpenter 2012).

When the harvest rate of top predators is low, the  
ecosystem has a single stable point with high biomass of top 
predators (Carpenter et  al. 2008, Brock and Carpenter 
2012). When the harvest rate is increased past a critical level 
from below, the ecosystem becomes bistable with two stable 
points at low and high biomass of top predators. We studied 
the performance of the QD method as harvest rates were 
gradually increased toward the critical point leading to a 
transition to the alternate bistable condition.

We investigated the performance of the rolling-window 
standard deviations of two monitored variables, prey fish and 
phytoplankton biomass. Prey fish are directly involved in the 
interaction that creates the bifurcation, whereas phytoplank-
ton are two trophic levels away from the bifurcation. In prac-
tice, it is difficult to measure high-frequency time series of 
prey fish biomass but relatively easy to measure high- 
frequency time series of phytoplankton. Therefore it is useful 
to know whether phytoplankton-based indicators can  
provide early warnings. Window length was 60 time steps.

We also evaluated the possibility of reversing a regime 
shift by detecting a loss of resilience and then immediately 
decreasing the harvest rate of top predators in the model. For 
reversal experiments, we used the QD procedure with
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where St is the time series of rolling window standard deviations 
for prey fish or phytoplankton. For reversal experiments 
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the early part of year 3, and the first alarm occurs early in 
year 2 (Fig. 1C). The first alarm indicates that the early  
warning has arrived and the threshold is approaching (‘the 
missile has been detected’). This occurred on day 130  
(Fig. 1C), after the first bass addition on day 57 (green line, 
Fig. 1B) but before the bass additions on days 137 and 171. 
The subsequent alarms indicate that the threshold is still 
nearby (‘the missile is still there’). The regime shift was com-
plete by day 293 (Fig. 1C, gray line). The field experiment 
was designed to hold the ecosystem close to the threshold  
for as long as possible, while still moving slowly toward the 
threshold. It is difficult to state precisely when the new bass-
dominated regime began, but we observed many young- 
of-year bass in late 2009 and their high survivorship over  
the winter of 2009–2010. This recruitment of bass was a  
key event in the completion of the trophic cascade.

In a management setting, action would be taken after the 
first alarm if tolerance for the pending regime shift was low. 

based on the prey fish standard deviation, mf  0.03, 
sf  0.03, mg  0.06, and sg  0.03 for the simulations 
reported below. For reversal experiments based on the  
phytoplankton standard deviation, we set mf  0.2, sf  0.2, 
mg  0.4, and sg  0.1. All computations were performed  
in R ver. 2.15.0 downloaded 28 May 2012 (www.r- 
project.org/).

Results

Time series of daily log10 transformed chlorophyll concen-
trations measured in Paul (reference) and Peter (manipu-
lated) lakes are presented in Fig. 1A. Rolling-window 
standard deviation of chlorophyll was elevated in year 2 
(2009) and the first half of year 3 (2010) (Fig. 1B). In  
concert with the elevated standard deviation, the Shiryaev– 
Roberts statistic (Eq. 2) spikes frequently during year 2 and 
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Figure 1. Time series from the whole-lake experiment from summer stratified seasons of 2008–2011 organized as contiguous days  
from the start of the experiment. Vertical dashed lines denote breaks between years. (A) Log10 of daily chlorophyll concentration in  
Paul (reference, blue) and Peter (manipulated, red) lakes. (B) Rolling window (28 day) standard deviation of chlorophyll in Paul (reference, 
blue) and Peter (manipulated, red) lakes. The vertical green line shows the time of first bass addition and the vertical gray stripe shows  
the approximate time when the regime shift was completed. (C) Shiryaev–Roberts statistic and days of alarms (red dots).
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than the number of time steps that will be analyzed. For this 
data set the number of time steps was 436, log10(436) ≈ 2.6, 
near the breakpoint of the curve in Fig. 2A. Therefore the 
day of the first alarm was roughly similar for values of A 
greater than the number of time steps in this data set.

For values of Δf between zero and about 0.04 the first 
alarm occurred around day 130, i.e. early in year 2 (Fig. 2B). 
In applications of QD, Δf and sf can be estimated from data 
obtained early in the time series.

For values of Δg above about 0.1, the first alarm occurred 
around day 130, i.e. early in year 2, and increased slowly  
as Δg increased (Fig. 2C). The day of first alarm was similar 
for values of sg between 0.01 and 0.3 (Fig. 2D). In applica-
tions of QD, simulations could be used to estimate the 
ranges of Δg and sg for which the alarm time was relatively 
insensitive to parameter choice.

The QD procedure based on daily observations of  
chlorophyll provided an early warning. However the field 
data cannot be used to determine whether the regime shift 
could have been reversed following detection. We used a 
simulation model to evaluate the possibility of reversing a 
regime shift.

In the food web model, standard deviation of prey fishes 
rises steeply as the ecosystem passes through the critical 

Analysis of the rolling-window autocorrelation time series 
showed the first alarm at time step 144 (Supplementary 
material Appendix A1), which is similar to the time step of 
first alarm (130) shown by the standard deviation.

Time series of chlorophyll, pH, dissolved oxygen, zoo-
plankton biomass and planktivorous fishes exhibit statistical 
signatures of critical transition, including elevated variance 
and autocorrelation, in years 2 and 3, consistent with  
the pattern shown here (Carpenter et  al. 2011, Seekell  
et  al. 2012, Pace et  al. 2013). These papers show that the 
ecosystem regime shift was complete by late in year 3  
(about day 300 on the x-axes of Fig. 1). Thus the QD  
procedure discerns a loss of resilience as the regime shift 
begins and well before the regime shift is complete.

Over broad ranges of the parameters, the day of first alarm 
is rather constant (Fig. 2). The time of first alarm is especially 
important, because the first alarm would trigger action in a 
management situation. For values of the alarm threshold  
A from 102.5 to 109, the first alarm occurs near day 130, or 
early in the second year (2009) (Fig. 2A). It is possible to  
set A high enough that no alarms occur (not shown).

Note that R will increase by one unit per time step if  
the original and new states of the system are identical  
(i.e. L  1). This suggests that A should be set to be greater 
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Figure 2. Day of first alarm versus values of the parameters of the quickest detection algorithm. Vertical dashed lines indicate nominal  
value of each parameter. (A) Day of first alarm versus A, the detection threshold. (B) Day of first alarm versus Δf, the shift below the  
Paul Lake value in f( ). (C) Day of first alarm versus Δg, the shift above the Paul Lake value in g( ). (D) Day of first alarm versus value of  
s used in g( ).



295

Discussion

The rolling-window standard deviation combined with the 
Shiryaev–Roberts statistic provided signals of resilience 
loss in field data and in models. Sensitivity analysis shows 
that the timing of alarms depends only weakly on the 
parameters over broad ranges. Furthermore the method  
is optimal in the following sense: it minimizes the  
average detection delay subject to a lower bound on the 
average time to false positive alarms (Polunchenko  
and Tartakovsky 2012, pp. 662–663).

The QD method is designed for online management in 
real time, in which statistics are continually updated as  
new data are observed, an alarm is issued as soon as a test 
criterion is exceeded, and management action follows 
immediately. In this respect, the QD approach differs from 
the methods employed so far to measure early warnings or 
resilience of ecosystems (Dakos et al. 2012). The QD proce-
dure is likelihood-based and therefore depends on comput-
ing the likelihood for two alternative models. It could easily  
be adapted for use with more sophisticated and specific  
time series models for particular ecosystem regime shifts, 
such as the models used by Carpenter and Pace (1997), 
Carpenter (2002), Boettiger and Hastings (2012a) and Ives 
and Dakos (2012).

transition due to the gradual increase in harvest rate of pis-
civores (Fig. 3A). This behavior is consistent with previous 
analyses of this model (Carpenter et  al. 2008, Brock and 
Carpenter 2012). Management interventions were simu-
lated by decreasing harvest rate to zero after the first  
alarm. When the resilience indicator was computed from 
rolling-window standard deviation of the prey fish, the 
decrease of harvest rate to zero prevented the collapse of the 
piscivore biomass and rise of the prey fish biomass  
(Fig. 3B). In contrast, when the resilience indicator was 
computed from rolling-window standard deviation of the 
phytoplankton the decrease of harvest rate to zero failed  
to prevent the collapse of the piscivore biomass and rise of 
the prey fish biomass (Fig. 3C).

In the model, the prey fish are directly involved in the 
nonlinear interaction that creates the critical transition, 
whereas the phytoplankton are two trophic levels removed 
from this key interaction (Carpenter et al. 2008). Additional 
noise terms (added to zooplankton and phytoplankton 
dynamics) affect the phytoplankton but are unrelated to the 
variance created by the critical transition. Thus the standard 
deviation of the prey fish sounds the alarm relatively early in 
the time series (Table 1). The alarm based on phytoplankton 
statistics is delayed by about 150 time steps and comes  
too late to prevent the collapse of the piscivore population.

Figure 3. Simulated time series using the food web model. Each panel presents piscivore biomass ( 10), prey fish biomass, and rolling 
window standard deviation of a resilience indicator. Vertical dashed lines in (B) and (C) show the time step when piscivore harvest drops to 
zero based on day of first alarm. (A) Baseline situation with no intervention. (B) Case where intervention is triggered by the rising standard 
deviation of the prey fish. (C) Case where the intervention is triggered by the rising standard deviation of the phytoplankton.
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warnings were evident long before the regime shift. In this 
field experiment the goal was to push the system to the alter-
nate, piscivore-dominated state so we cannot address if  
the phytoplankton warnings came too late to prevent the 
transition.

Our findings corroborate the conclusions of previous 
studies that have considered the prevention of regime shifts 
in ecosystems. Using a similar model of fish interactions, 
Biggs et  al. (2009) found that piscivore stocks could be  
preserved by harvest interventions under some conditions 
but not others. In a model of lake eutrophication, Contamin 
and Ellison (2009) found a similar result – eutrophication 
could be prevented by prompt action under certain condi-
tions. Using a model for the North Atlantic thermohaline 
circulation, Kleinen et al. (2003) found that climate warm-
ing due to greenhouse gas emission probably could not be 
reversed in time to prevent a critical transition in ocean  
physics. So far all tests of the use of resilience indicators  
to prevent collapse of ecosystems have employed models. 
Experimental field tests of the indicators at the scale of whole 
ecosystems are needed to confirm or refute the possibility of 
using resilience indicators to prevent regime shifts. Quickest 
detection offers a flexible method that can easily be adapted 
for such tests in complex field situations.

The complex relationships of changing environmental 
drivers, ecosystem responses, thresholds, and the possibility 
of regime shifts remains an open topic of scientific research. 
QD is only one tool among many for investigating  
resilience and the possibility that statistical changes can 
indicate approaching thresholds of ecosystem change. We 
are far from having reliable tools for detecting regime  
shifts for ecosystem management. Not all regime shifts  
are caused by critical transitions (Carpenter 2003), not all 
critical transitions have early warnings (Scheffer et  al. 
2012), and, as shown in our study, not all early warnings 
come soon enough for management interventions to pre-
vent the regime shift. Surprises will always be with us. 
Nonetheless, emerging statistical tools have the potential  
to reveal new insights about some important kinds of eco-
system regime shifts.
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Appendix A1 

Example using autocorrelation 

The QD method was applied to time series of lag-1 autocorrelations for the whole-lake 

experiment computed using the same 28 day rolling windows used for variance in the main text. 

The detection threshold A = 1000 as in the main text. Functions for the original state f(αt) and 

new state g(αt), where αt is the rolling-window autocorrelation at time step t, were 

, ,

,

( ) ( , 0.2)
( ) ( 1, 0.04)

t M t C

t M

f N
g N
α µ α σ

α µ σ

= =

= =

:
:

       (A1.1)  

As in the main text, the subscript M stands for the manipulated lake and C stands for the 

reference lake. In the original state f(αt), the mean autocorrelation in the manipulated lake is 

assumed equal to that of the reference lake, with a standard deviation equal to the observed 

standard deviation of the autocorrelation of the reference lake. In the altered state g(αt) the mean 

autocorrelation of the reference lake is assumed equal to one, the theoretical value for the early 

warning, and the standard deviation was assumed equal to zero. 

Results (Fig. A1) show that autocorrelation remained close to one for much of the second 

and third years (Fig. A1 panel B). The time step of first alarm was 144 (Fig. A1 panel C), 

somewhat later than the time step of first alarm for variance which was 130. 
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Figure A1. Time series from the whole-lake experiment from summer stratified seasons of 2008-
2011. Vertical dashed lines denote breaks between years. (A) Log10 of daily chlorophyll 
concentration in Paul (reference, blue) and Peter (manipulated, red) lakes. (B) Rolling window 
(28 day) lag-1 autocorrelation of chlorophyll in Paul (reference, blue) and Peter (manipulated, 
red) lakes. The vertical green line shows the time of first bass addition and the vertical gray 
stripe shows the approximate time when the regime shift was completed. (C) Shiryaev-Roberts 
statistic and days of alarms (red dots). 
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Appendix A2 
Food-web model 
This appendix presents the equations of the food web model based closely on the presentation by 

Brock and Carpenter (2012). Parameter values are presented in Carpenter et al. (2008) except 

where stated otherwise. Dynamics of adult piscivores A follow 

A
J A A

dWdA s J qEA m A
dt dt

σ= − − +
       (A2.1)  

where sJ is the rate coefficient for maturation of juveniles (J) adults (sJ = 0.5 y-1); q is 

catchability; E is angler effort; mA is the mortality rate coefficient for A (mA = 0.5 y-1); and σA is 

the noise magnitude. 

Dynamics of juveniles J follow 

J JF
A J JA J

JF

dW c vFJdJ f A c JA s J
dt dt h v c F

σ⎛ ⎞= + − − −⎜ ⎟ + +⎝ ⎠      (A2.2)  

fA is fecundity of adults; cJA is a cannibalism coefficient; cJF is predation on juveniles by 

planktivores; v is the vulnerability coefficient; h is the hiding coefficient. 

Planktivore F dynamics follow 

( ) F
F R FA F

dWdF D F F c FA
dt dt

σ= − − +
       (A2.3)  

DF is an exchange coefficient between the refuge and open water; FR is the refuge density of 

planktivores; cFA is consumption coefficient of planktivores by piscivores; σF is the noise 

magnitude. 

Herbivore (zooplankton)  H dynamics follow 

dt
dWHFcHPcHHD

dt
dH H

HHFHPRH σα +−+−= )(
     (A2.4)  

DH is an exchange coefficient between refuge and open water; HR is the refuge density of 

herbivores; α is the conversion coefficient between phytoplankton and herbivores; cHP is a 

grazing coefficient; cHF is the predation coefficient for planktivory; σH is the noise magnitude. 

Phytoplankton (P) dynamics follow 

dt
dWHPcmPPPILr

dt
dP P

PPHP σγ +−−= ),( 0
      (A2.5)  
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rP is a growth coefficient; L is phosphorus loading; γ is the growth function described in 

Carpenter et al. (2008); m is non-grazing mortality; cPH is the grazing coefficient; σP is the noise 

magnitude. 

The growth function γ imposes self-shading on the phytoplankton which imposes density-

dependency on their growth (Carpenter et al. 2008). Because surface irradiance I0 is constant in 

these simulations, the dynamic impact of γ is stabilizing, through density-dependence of P 

dynamics. Details of the growth function γ are presented in Carpenter et al. (2008) and are not 

essential for understanding results presented here.  
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