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[1] The abundance and size distribution of lakes is critical
to assessing the role of lakes in regional and global
biogeochemical processes. Lakes are fractal but do not
always conform to the power law size-distribution typically
associated with fractal geographical features. Here, we
evaluate the fractal geometry of lakes with the goal of
explaining apparently inconsistent observations of power law
and non–power law lake size-distributions. The power law
size-distribution is a special case for lakes near the mean
elevation. Lakes in flat regions are power law distributed,
while lakes in mountainous regions deviate from power law
distributions. Empirical analyses of lake size data sets from
the Adirondack Mountains in New York and the flat island
of Gotland in Sweden support this finding. Our approach
provides a unifying framework for lake size-distributions,
indicates that small lakes cannot dominate total lake surface
area, and underscores the importance of regional hypsometry
in influencing lake size-distributions. Citation: Seekell, D.
A., M. L. Pace, L. J. Tranvik, and C. Verpoorter (2013), A fractal-
based approach to lake size-distributions, Geophys. Res. Lett., 40,
doi:10.1002/grl.50139.

1. Introduction

[2] How many lakes are there and how big are they? This
is one of the most fundamental questions when assessing the
roles of lakes in regional and global biogeochemical cycling.
Small lakes are generally not recorded on maps, and even the
best compilations of global lake data are thought to greatly
underestimate the abundance and surface area of small lakes
[Meybeck, 1995; Lehner and Döll, 2004; Downing et al.,
2006]. Consequently, the abundance and surface area of small,
unrecorded lakes is typically estimated based on extrapola-
tions from power law size-distributions [Downing et al.,
2006]. Analyses based on this methodology have revealed that
lakes cover a much greater portion of Earth’s land surface
(~3%) than previously believed, that lakes store substantial
amounts of carbon in their sediments (up to 820 Pg C), and
that greenhouse gas emissions from lakes may almost com-
pletely offset the terrestrial carbon sink [e.g., Cole et al.,
2007; Tranvik et al., 2009; Bastviken et al., 2011]. Because
of their abundance and high biogeochemical rates, small lakes

appear to play a large role in carbon emission and sequestra-
tion [Wetzel, 1990; Downing, 2010].
[3] There are two principal lines of evidence in support of

extrapolation based on a power law lake size-distribution.
First, lakes are fractals, meaning the convolutedness of their
shorelines is proportional to the scale at which they are
examined [Goodchild, 1988; Hamilton et al., 1992]. Fractal
geological features, like lakes, typically conform to a power
law size-distribution [Mandelbrot, 1983]. Second, linear
regressions on log-abundance log-size plots typically have
high r2 values, a pattern consistent with power law-distributed
data [Downing et al., 2006; Seekell and Pace, 2011].
However, many size distributions have high r2 values on
log-abundance log-size plots when small values are excluded
(i.e., lower size limits are truncated because of the uncertain
accuracy of observations at these lake sizes). Some high-
resolution lake size data sets that accurately observe small
lakes have low r2 values and deviate considerably from the
power law distribution, potentially indicating orders of magni-
tude overestimations of the abundance of small lakes by power
law distributions [Meybeck, 1995; Seekell and Pace, 2011].
For instance, a recent lake census for the United States has
found that the power law distribution does not adequately
describe the size distribution of lakes in some regions and
that early extrapolations based on the power law distribution
may have overestimated the global abundance of lakes by
240million [McDonald et al., 2012]. These differences in esti-
mates of lake abundance are significant. For example, Lewis
[2011] compared estimates of global gross primary production
of lakes based on power law and non–power law lake size-
distributions. The power law-based estimate produced a 45%
larger estimate than an alternate non–power law distribution.
Hence, the size distribution of lakes is poorly constrained,
but understanding lake size-distributions is critical to evaluat-
ing the role of lakes in regional and global biogeochemical
cycles [Tranvik et al., 2009].
[4] Analyses of lake size-distributions [e.g.,Hamilton et al.,

1992; Downing et al., 2006; Seekell and Pace, 2011;
McDonald et al., 2012] are limited, and there is a critical lack
of theory from which to derive testable hypotheses to guide
new developments in global-scale limnological analyses.
Here, we consider lake size-distributions in a fractal geometry
framework, with the goal of resolving inconsistent observa-
tions of power law and non–power law lake size-distributions.
We specifically focus on regional hypsometry (area-elevation
relationships) in influencing the shape of lake size-
distributions. We evaluate our findings with analyses of lake
size-distributions from mountainous and flat regions.

2. Conceptual Foundation for Lake
Size-Distributions in Fractal Geometry

[5] A lake shoreline is equivalent to a contour line for the
lake surface elevation. Consequently, fractal geometry theory
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developed for topographic contour lines is applicable to the
analysis of lake shorelines. Here, we synthesize evidence from
several studies of the fractal geometry of contour lines that are
relevant to lakes and show that apparently conflicting reports
of both power law and non–power law lake size-distributions
are consistent with expectations from fractal geometry
[Downing et al., 2006; Seekell and Pace, 2011].
[6] If we approximate a landscape with a fractal surface

[Mandelbrot, 1975, 1983; Russ, 1994] and intersect the
landscape with a horizontal plane at the mean landscape
elevation, the points where fractal surface returns to the
horizontal plane form a fractal known as a random Cantor
set [Matsushita et al., 1991; Russ, 1994]. The fractional di-
mension of the random Cantor set is one less than the fractal
dimension of the surface and can be measured based on the
distribution of distances between returns [Russ, 1994]. The
return points can be connected to form contour lines. Longer
distances between returns lead to larger areas enclosed by
the contour lines [in the sense of Matsushita et al., 1991;
Russ, 1994]. Because lake shorelines are contour lines for
the lake surface elevation, the distance between returns is
analogous to lake areas [in the sense of Matsushita et al.,
1991; Russ, 1994]. The shorelines of individual lakes have
a fractal dimension, but the collections of areas enclosed
by the shorelines are also power law distributed and associ-
ated with a fractal dimension that represents the collection of
shorelines [Matsushita et al., 1991; Isogami and Matsushita,
1992; Russ, 1994; Sasaki et al., 2006]. The fractal dimension
of the size distribution of lakes near the mean elevation is
measured with the regression

N ¼ c� A�b (1)

[7] where N is the number of lakes greater than or equal to
the area A, c is a constant, b =D / 2, and the functional form
(i.e., power law form) of the regression is based on the first
return rate of a fractional Brownian to the mean elevation
[Goodchild, 1988; Matsushita et al., 1991]. D is the fractal
dimension of the shorelines surrounding the lake area and
is constrained between D = 1 (a population of perfectly
smooth shorelines) and D = 2 (a population of shorelines so
irregular they are space filling). Hence, there is a theoretical
basis for a power law size-distribution of lakes at the mean
elevation, but there are theoretical constraints (0.5 ≤ b ≤ 1)
on the plausible range of exponents [Goodchild, 1988;
Hamilton et al., 1992].
[8] In some landscapes (e.g., mountainous ones) lakes are

present at elevations far from the mean [Goodchild, 1988]. If
returns through a horizontal plane intersecting the landscape
at an elevation far from the mean are recorded, the distribu-
tion of return times through the section (lake areas) begins to
deviate from a power law [cf. Ding and Yang, 1995]. In this
case the log-abundance log-size equation takes the form

N ¼ c� A�b � exp �d � Að Þ (2)

[9] where d is a constant and the functional form of the re-
gression is determined by the probability of the first return of
a fractional Brownian motion to an elevation not equal to the
mean [Ding and Yang, 1995]. This second size distribution
is just a more generalized function than the equation for
the mean elevation only. If d = 0, the equation is equivalent
to the equation for the size distribution at the mean elevation

(i.e., equation (1)). Conceptually, this means that in regions
of high vertical relief, there is less surface area at any one
elevation, and hence, there is simply not enough surface area
for lakes to form in a great enough abundance to achieve a
power law. As a consequence, regional hypsometry likely
plays a strong role in determining the shape of the size
distribution of lakes.

3. Empirical Analysis

[10] Based on the concepts outlined above, we conclude
that while the shorelines of individual lakes are fractal, this
only leads to a power law size-distribution of lakes in specific,
although not necessarily uncommon, cases. To test these
expectations, we analyzed the lake size data from the
Adirondack Mountains in New York [Seekell and Pace,
2011] and from the island of Gotland in Sweden [Verpoorter
et al., 2012]. We selected the Adirondack data because they
derive from a well-defined mountainous region and the Got-
land data because they derive from a well-defined flat region.
[11] We evaluated the Adirondack data based on four

criteria derived from the fractal concept for lakes. First, we
tested the data for deviation, based on the r2 value, from a
power law on a log-abundance log-size plot [Seekell and
Pace, 2011]. Power law distribution data should form a
straight line on a log-abundance log-size plot, and a low r2

value indicates deviation from a straight line and hence devi-
ation from a power law [Seekell and Pace, 2011; Appendix
A]. There is a large vertical relief in the Adirondack data set,
and hence, the distribution should deviate significantly from
a power law. Second, we extracted lakes at the mean lake el-
evation (n= 19 at elevation = 503m), which for this data set
is approximately the same as the mean landscape elevation,
and tested them, based on the r2 value, on a log-abundance
log-size plot for deviation from a power law. Lakes at the
mean elevation should not deviate significantly from a power
law distribution. Third, we compared the fractal dimension D
from the log-abundance log-size plots of lakes at the mean
elevation to fractal dimensions derived from dimensional anal-
ysis (log perimeter-log area analysis) [Russ, 1994]. The values
estimated from the log-abundance log-size plots should be
theoretically plausible and similar to estimates of D from
dimensional analysis. Fourth, we compared the fit of size-
distribution equations (1) and (2) (above) to lakes away from
the mean elevation. For lakes away from the mean elevation,
size-distribution equation (2) should exhibit improved fit rela-
tive to size-distribution equation (1).
[12] The Adirondack Mountain data set is based on a strati-

fied sample of lakes digitized from USGS topographical maps
designed to accurately represent lakes of different sizes and
includes ponds as small as 0.1 ha. For the Adirondack
Mountain lake data set (n=1469; Figure 1), the slope of the
log-abundance log-size regression on the entire data set was
�0.658 (Figure 1a). This falls within the theoretical con-
straints of 0.5≤ b≤ 1, but the r2 value (r2 = 0.853) was signifi-
cantly lower than expected (critical r2 = 0.990) if the data
conformed to a power law distribution [Seekell and Pace,
2011]. The lake elevation distribution roughly conformed to
the normal distribution (Figure 1b), and there was consider-
able variability in lake elevation (mean elevation = 503.6m,
standard deviation= 111.7). The slope of the log-abundance
log-size regression for lakes at the mean elevation (503m,
n=19 lakes) was �0.613 (Figure 1c). This slope falls within
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the theoretical constraints of 0.5≤ b≤ 1, and the r2 value
(r2 = 0.98) was consistent (critical r2 = 0.846) with data that
conform to a power law distribution [Seekell and Pace,
2011]. The fractal dimension of the size distribution is
D=1.23, which is very similar to the fractal dimension
(D=1.22) derived from dimensional analysis for the entire
lake data set.
[13] We fit the size-distribution equations (1) and (2) to

lake sizes from a 25m range (n= 67 lakes between 612.5
and 637.5m) about 100m above the mean elevation. Using
lakes from this small range as opposed to just from one ele-
vation was necessary in order to achieve a sample size large
enough for analysis, and the range of elevations was based
on the bounds of an arbitrarily selected bin from a histogram
of lake elevations. We compared the fits of the alternate
regression models on log-abundance log-size plots by

examining the dual criteria of linearity of predicted versus
observed values and evenness of distribution of points above
and below the regression line [Quandt, 1964]. Both
equations are unbiased in the statistical sense (the slopes of
regressions on these variables = 1), but the predicted and ob-
served values are not linearly related for size-distribution
equation (1) (Figure 2a) whereas they are for size-
distribution equation (2) (Figure 2b). The points are much
more evenly distributed around the regression line for size-
distribution equation (2) (Figure 2b) than they are for size-
distribution equation (1) (Figure 2a). Based on these dual
criteria, the fit of size-distribution equation (1) (r2 = 0.826)
was poor relative to the fit of size-distribution equation (2)
(r2 = 0.992). We do not attempt to interpret the values of
the coefficients from size-distribution equation (2) because
both independent variables are lake surface area and this col-
linearity can lead to highly inaccurate parameter estimates.
[14] The Gotland lake (n= 114) data are based on a recent

high-resolution census of lakes greater than 0.01 km2, de-
scribed in detail by Verpoorter et al. [2012]. We tested the
lake area for deviation from a power law on a log-abundance
log-size plot based on the r2 value. Gotland is an island with
low vertical relief, and hence, the data should not deviate
from the power law. We compared the fractal dimension de-
rived from the log-abundance log-size regression to a fractal
dimension derived from dimensional analysis. The fractal
dimensions should be similar to each other. For the Gotland
data set, the slope of the log-abundance log-size regression
on the entire data set was �0.795 (Figure 3a). This falls
within the theoretical constraints of 0.5 ≤ b ≤ 1, and the r2
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Figure 1. (a) Log-abundance log-size plot for lakes in the
Adirondack Mountains (n = 1469). The slope of the regres-
sion line is �0.658. The distribution of lake sizes departs
significantly from the power law distribution. (b) Histogram
of elevations for Adirondack Mountain lakes. The mean
elevation is 503.6m (standard deviation 111.70, range
992). The distribution of lake elevations roughly conforms
to a normal distribution. (c) Log-abundance log-size plot
for lakes (n = 19) at the mean elevation (503m). The slope
of the regression line is �0.613. The distribution of lake
sizes near the mean elevation does not depart significantly
from the power law distribution.
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value (r2 = 0.995) was consistent (critical r2 = 0.935) with
data that conform to a power law distribution [Seekell and
Pace, 2011]. There was little variability in lake elevation
in this region (mean elevation = 18.8m; standard deviation =
18.7), and all lakes are near the mean elevation (Figure 3b).
The fractal dimension derived from the log-abundance log-
size plot (D = 1.59) is higher than the fractal dimension
derived from dimensional analysis (D= 1.3), but 95% confi-
dence intervals for these parameters overlapped such that
they are not inconsistent.

4. Discussion

[15] Our empirical analysis of lake sizes from a flat and
mountainous region supported expectations drawn from
the fractal concept and can explain apparently conflicting
observations of power law and non–power law lake size-
distributions. Regional hypsometry influences the shape of
lake size-distributions such that mountainous regions likely
depart from the power law lake size-distribution, whereas
other flatter regions likely conform to a power law lake
size-distribution. The fractal concept is not specific to
Earth’s surface, and the generality of the concept, as applied
to lakes, is supported by additional empirical analyses of
ancient lake basins on Mars (Appendix B).
[16] Our empirical results for lakes at the mean elevation

met the dual criteria for the fractal concept that (1) the shape
on a log-abundance log-size plot conformed to a power
law distribution and (2) the slope of the regression on the

log-abundance log-size plot was consistent with that expec-
tation from independent measurements of the topography.
However, some distributions, even for lakes at or near the
mean elevation, might still deviate from the power law dis-
tribution. In many distributions the upper tail deviates from
a power law because it is impossible to fit enough large lakes
on a finite surface, truncating the distribution. In this case the
lower tail of the distribution will still potentially conform to
the power law distribution [Hamilton et al., 1992]. When
small lakes are not completely enumerated, the lower tail
of the size distribution may depart from a power law, but
only below the minimally reliably mapped area. Deviations
in the lower tail above the minimum reliably mapped size
are not the results of mapping error [Seekell and Pace,
2011]. We cannot completely rule out potential impacts of
truncation or mapping error on our analysis. However, we
observed curvature extending throughout the entire
Adirondack lake distribution (e.g., Figure 1a). This curva-
ture is inconsistent with a power law, but consistent with
size-distribution equation (2) [Seekell and Pace, 2011].
Size-distribution equation (2) cannot explain the complete
flattening of the extreme lower tail (lakes< 0.01 km2),
which could be due to omission of small lakes from the data
set. This flattening could also occur if scale-dependent
geomorphic processes have eliminated these very small
lakes from the landscape. Our approach serves as null
hypotheses for landscapes without these processes and
hence does not account for this effect [Goodchild, 1988].
We did not observe any patterns (e.g., breaks in linearity,
regular spacing in between points on the low end of area
and perimeter ranges) in our perimeter-area relationships
that would suggest an adverse effect of mapping resolution.
[17] Our analysis is based on a theoretical fractal surface.

Fractal surfaces can approximate a wide variety of land-
scapes [Mandelbrot, 1975, 1983], but are scale free and
hence do not include scale-dependent geological processes
including some that may change lake abundances
[Goodchild, 1988]. The fractal approach utilized here is only
an approximation to real landscapes, but this approach is
advantageous for simplifying the development of testable
hypotheses that are useful for regional and global limnolog-
ical studies [Goodchild, 1988]. The geology of landscapes
may modify how well data fit the simple fractal landscape
model. For example, Gotland formed through isostatic uplift
and the draining of Baltic Sea’s freshwater predecessors.
The rock is carbonate, resulting in karst weathering, a land-
scape likely to mimic the equally peaked and pitted fractal
model because pits are less likely to be filled by mass wast-
ing than other landscapes [Goodchild, 1988; Clarke, 1988].
Hence, our null model for Gotland suggests a power law dis-
tribution because it is relatively flat, but the karst topography
may also promote the observed lake size-distribution
conforming to this null hypothesis. The Adirondacks are
mountainous and a null hypothesis for this landscape
suggests deviation from a power law (i.e., size-distribution
equation (2)). This landscape was glaciated with steep slopes
subject to soil erosion, rockslides, and valley formation.
These types of geomorphic processes may modify the land-
scape at scales that can contribute to deviations from a
power law (i.e., additional deviation beyond that due to
elevation alone). The hypothetical fractal surface is flat
(i.e., not spherical) with a single fractal dimension. While
this is a reasonable assumption for the relatively small
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Figure 3. (a) Log-abundance log-size plot for lakes in
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regions in our empirical analysis, it may not be appropriate
for large-scale analyses that combine multiple physiographic
regions. Overall, our empirical results were largely consis-
tent with fractal expectations, suggesting that this approach
will have utility for further analyses of lake morphometry
and lake size-distributions.
[18] In an analysis by Downing et al. [2006], the value of

b for the world’s largest lakes was 1.06. This has important
implications because, if the data conform to a Pareto distri-
bution (power law distribution), this slope (b = 1.06) indi-
cates that small lakes dominate the total surface area covered
by lakes. However, this value is inconsistent with fractal
geometry theory in that the slope b is constrained between
b= 0.5 and b= 1 [Goodchild, 1988]. A potential reason for
finding b> 1 may be truncation of the lower tail of the lake
size-distribution. In their analysis of the world’s largest
lakes, Downing et al. [2006] excluded all lakes less than
10 km2 in area. This type of truncation can make data from
many size distributions mimic the linearity of a power law
distribution on log-abundance log-size plots and also make
the slope of the mimicking data appear steeper than is plau-
sible from power law-distributed data [Perline, 2005; Seekell
and Pace, 2011]. Another estimate of b based on 251 large
lakes was 0.83, a plausible value [Downing et al., 2006],
but extrapolation from many of these estimates remains
difficult because the mean and variance calculated from
samples of power law-distributed data vary wildly with
small changes in sample size [Mandelbrot, 1963]. Hence,
there is tremendous uncertainty in (1) whether the power
law distribution adequately describes the global and regional
size distribution of lakes and (2) what the relative contribu-
tion of small versus large lakes is to global lake surface area.
These uncertainties are probably best resolved by complete
enumeration of lakes [Seekell and Pace, 2011; McDonald
et al., 2012].
[19] Most of Earth’s land surface (~75%) is located

outside of mountainous or high-elevation regions, and con-
sequently, the power law distribution may hold over much
of Earth’s surface [Miller and Spoolman, 2011]. Many
lake-rich regions are relatively flat (e.g., Finland), and
power law distribution fits to lakes in these regions may be
useful for understanding lake hydrological and biogeo-
chemical response to environmental change. Small lakes
are thought to play an important role in regional- and
global-scale biogeochemical cycles, and the potential
dominance of small lakes in terms of surface area has been
cited as important to this argument [Downing, 2010]. While
our results suggest that small lake dominance of surface area
is unlikely, even in regions where the power law distribu-
tion holds (because b must be ≤ 1), this does not preclude
small lakes from significance in regional biogeochemical
cycles. Small lakes typically have higher fluxes and faster
reaction rates than large lakes and consequently may still
contribute disproportionately to biogeochemical cycles of
lake-rich regions [Downing, 2010]. This potential impor-
tance, however, is not due to small lake dominance of total
lake surface area. Many critical biogeochemical processes
in lakes may be driven by processes at a regional scale
[Lapierre and del Giorgio, 2012]. Relating the spatial
organization of biogeochemical processes to regional lake
size-distributions may be a promising route for improved
understanding of the role of lakes in biogeochemical cycles
at broad spatial scales.
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