Ecosystem size determines food-chain length in lakes

David M. Post*, Michael L. Pace† & Nelson G. Hairston Jr*

* Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, New York 14853, USA
† Institute of Ecosystem Studies, Box AR, Millbrook, New York 12545, USA

Food-chain length is an important characteristic of ecological communities: it influences community structure, ecosystem functions and contaminant concentrations in top predators. Since Elton first noted that food-chain length was variable among natural systems, ecologists have considered many explanatory hypotheses, but few are supported by empirical evidence. Here we test three hypotheses that predict food-chain length to be determined by productivity alone (productivity hypothesis), ecosystem size alone (ecosystem-size hypothesis) or a combination of productivity and ecosystem size (productive-space hypothesis). The productivity and productive-space hypotheses propose that food-chain length should increase with increasing resource availability; however, the productivity hypothesis does not include ecosystem size as a determinant of resource availability. The ecosystem-size hypothesis is based on the relationship between ecosystem size and species diversity, habitat availability and habitat heterogeneity. We find that food-chain length increases with ecosystem size, but that the length of the food chain is not related to productivity. Our results support the hypothesis that ecosystem size, and not resource availability, determines food-chain length in these natural ecosystems.

A major impediment to critically testing the productivity (Fig. 1a), productive-space (Fig. 1c) and ecosystem-size (Fig. 1b) hypotheses in natural systems has been the inability to measure accurately both food-chain length and ecosystem size. We overcame these obstacles by using stable isotope techniques to determine food-chain length and by taking advantage of the relative isolation of lakes to estimate ecosystem size. We estimated food-chain length in 25 northern temperate lakes ranging in volume from 3.8×10^3 to 1.7×10^4 m3, and ranging in total phosphorus from 2.6 to 230 μg l$^{-1}$. Nearly all northern temperate lakes are phosphorus-limited and total phosphorus is a strong predictor of primary productivity in phosphorus-limited lakes. Vander Zanden et al. described a positive relationship between food-chain length and both lake area and water clarity (their measure of productivity). They could not separate, however, the influence of productivity and ecosystem size because their gradients of lake area and water clarity were correlated. Total phosphorus and lake volume are not correlated in our 25 lakes ($r = -0.21$, $P = 0.31$).

Our work differs from previous empirical tests of food-chain theory in four important ways. First, we collected data from lakes along independent gradients of productivity and ecosystem size. Second, our observations were made at the ecologically relevant scale of whole food webs. Third, our observations were made in temperate lakes that are ecologically similar, contain similar communities and are all located within a restricted geographic region. Finally, we used stable isotope techniques to estimate maximum trophic position (MTP), a variable that is conceptually similar to mean food-chain length. Because MTP is a continuous variable, we can detect subtle changes in food-chain length within the naturally occurring range of ecosystem size and productivity.

Stable isotope ratios of nitrogen and carbon are powerful tools for evaluating trophic structure and energy flow in ecological communities. The δ15N of an organism is typically enriched by 3.4‰ (±1‰) relative to its diet, and can be used to determine the trophic position of an organism. In contrast, δ13C changes little as carbon moves through the food web and can be used to evaluate the ultimate sources of energy for an organism. In lakes, δ13C is particularly useful for differentiating between the two major sources of available energy: littoral (near shore) production from attached algae and detritus, and pelagic (open water) production from phytoplankton. In our study lakes, the difference between littoral and pelagic δ13C was between 2 and 10‰ (mean, 6.5‰), with littoral δ13C enriched in 13‰ relative to pelagic δ13C.

Stable isotopes provide a continuous measure of trophic position (as opposed to discrete trophic levels) which integrates the assimilation of mass from all the trophic pathways leading to a top predator. Estimates of trophic position using stable isotope techniques therefore reflect the magnitude of energy or mass flow through different food web pathways and account for complex interactions such as trophic omnivory. Trophic position is calculated as $\lambda = (\delta^{15}N_{\text{organism}} - \delta^{15}N_{\text{base}}/\text{food web})/3.4$, where λ is the trophic position of the organism used to estimate δ$^{15}N_{\text{base}}$ of food web (for example, $\lambda = 2$ for primary consumers). δ$^{15}N_{\text{organism}}$ is measured directly and 3.4 is the average enrichment in δ15N per trophic level. For long-lived and mobile predators, δ$^{15}N_{\text{base}}$ of food web (hereafter called $\delta^{15}N_{\text{base}}$ of food web) must capture the potentially high temporal variation in δ15N of primary producers and detrital energy sources, and account for the spatial heterogeneity in δ15N both within and among lakes. Our observations show that, within a lake, there can be seasonal differences of ≥4‰ in the δ15N of phytoplankton and 3–4‰ differences in δ$^{15}N_{\text{base}}$ between the littoral and pelagic food webs. Furthermore, we observed differences of >13‰ in δ$^{15}N_{\text{base}}$ among lakes for both pelagic and littoral food webs. To account for this variability, we used filter-feeding mussels and surface-grazing...
snails collected in each of our study lakes as temporal integrators of productivity.

Figure 2 Relationships between maximum trophic position and ecosystem size or productivity. a, Ecosystem size for low (2–11 μg l⁻¹ total phosphorus (TP)), moderate (11–30 μg l⁻¹ TP) and high productivity lakes (30–250 μg l⁻¹ TP). b, Productivity for small (3 × 10⁵ to 3 × 10⁶ m²), medium (3 × 10⁶ to 3 × 10⁷ m²) and large lakes (3 × 10⁷ to 2 × 10⁸ m²). Maximum trophic position is the trophic position of the species with the highest average trophic position in each of the lake food webs. The data are from 25 lakes in northeastern North America.

Figure 3 The increase in maximum trophic position is caused by both changes in top predator species and increases in the trophic position of each top predator. a, Maximum trophic position data from Fig. 2a labelled to identify the top predator species in each lake. b, The relationship (linear regression) between trophic position of top predator species and ecosystem size for largemouth bass (14 lakes), n = 44, r² = 0.22, P < 0.01, walleye (13 lakes, n = 39, r² = 0.55, P < 0.01), northern pike (11 lakes, n = 25, r² = 0.20, P < 0.01) and lake trout (7 lakes, n = 22, r² = 0.89, P < 0.01) plotted over the range of ecosystem size in which each species was found (data not shown).

Maximum trophic position increased with lake volume but not with total phosphorus (Fig. 2), and lake volume was the only significant predictor of MTP (log volume, t = 9.28, P < 0.001; log total phosphorus, t = 0.59, P = 0.56). Lake size alone explained 80% of the variation in maximum trophic position (MTP = 2.51 + 0.2 × log volume; P < 0.001, r² = 0.80). The increase in MTP from about 3.5 in the smallest lakes to around 5 in the Laurentian Great lakes represents an increase in food-chain length of almost 1.5 trophic levels. Four species occupied MTP in our data set: largemouth bass and northern pike in the smaller lakes, and walleye and lake trout in the largest lakes (Fig. 3a).

The increase in MTP with increasing lake size was caused by both the addition of new top predator species to larger lakes and a general increase in the trophic position of each top predator with increasing lake size (Fig. 3). For example, lake trout were not found in our smallest lakes, and in the largest lakes their trophic position increased with increasing lake size (Fig. 3). The addition of a new top predator increases MTP by adding new trophic steps to the top of the food web. In contrast, changes in the trophic position of a single top predator species must be caused by lengthening of food chains between the top and bottom of the food web. This lengthening is probably caused by some combination of functional diversification of the middle of the food web (for example, the addition of a new intermediate predator such as mysid shrimp, Mysis relicta, in our larger lakes) and reduced trophic omnivory at any or all trophic levels. Trophic omnivory probably declines as lake size increases because habitat heterogeneity and prey refugia increase with lake size. These changes may allow larger populations of preferred or optimal prey, which promote increased dietary specialization and reduced trophic omnivory. These changes to the top and middle of food webs are facilitated by increases in functional rather than species diversity.

If functional diversity is a determinant of maximum trophic position, then the ultimate cause of variation in food-chain length will be factors that influence the functional diversity of species in food webs. Human-mediated modifications of natural systems that affect the functional diversity of food webs, such as cultural eutrophication, species invasions and habitat fragmentation, will also affect food-chain length. Changes in food-chain length may, in turn, cause further changes in community dynamics, ecosystem function and contaminant concentrations in apical predators.

The importance of primary productivity in explaining variation in food-chain length has been debated for 40 years4,10,12,16. Unlike the few studies that indicate some relationship between productivity and food-chain length12,20,26,27, we found that ecosystem size was the only determinant of food-chain length in our study lakes. In contrast to many previous studies12,20,26,27, we adopted a continuous measure of food-chain length and used independent gradients of productivity and ecosystem size in a natural setting. Although productivity must be an ultimate constraint of food-chain length16,17, and may be important in small systems12,26 or where productivity is very low16,18, our results and those of others4,8,10 show that productivity is a poor predictor of, and has a limited direct role in controlling food-chain length.

Methods
To test the use of mussels and snails as indicators of the isotopic signature of the base of the littoral and pelagic food webs, we collected time series of periphyton (attached algae) and detritus samples from the littoral zone, and zooplankton and detritus (a mixture of phytoplankton and other particulate organic matter) from integrated epilimnetic water
samples from the pelagic zones of three lakes (Spencer, Oneida and Cayuga). Periphyton and detritus were brushed from rocks, macrophytes and logs and pre-filtered through a 75-μm mesh to remove large invertebrates. Sediment was pre-filtered through a 75 or 30 μm mesh. All periphyton and sediment samples were then filtered onto pre-combusted glass fibre filters. Zooplankton were filtered from the water using a 150-μm mesh and visually inspected to remove particulate contaminants and predatory zooplankton. Each lake was sampled every two weeks from early June to late August (5–6 dates) in 1997 and 1998. Zooplankton were collected to provide the δ13Craw of the pelagic food web because zooplankton are a better indicator of δ13Cfood for the pelagic food web than sediment samples26. Snails and mussels were sampled in late August. In Spencer Lake we used unionid mussels (Unionacea) and in Cayuga and Oneida lakes we used zebra mussels (Dreissena polymorpha). In three other New York lakes (Champlain, Conesus and Keuka lakes), where unionid and zebra mussels occurred together, we found no difference in their δ13C and δ15N values (nested ANOVA with species nested in lake, d.f. = 3, F = 2.85, P = 0.06 for δ15N; d.f. = 3, F = 1.79, P = 0.19 for δ13C). Mussels and snails effectively captured the spatial variation and integrated the temporal variation in the δ13C and δ15N of lake and annual lake food webs. Using lake–habitat combinations as replicates (n = 6 for both δ13C and δ15N), we found no significant differences between the median δ13C and δ15N of each time series and the δ13C and δ15N of snails and mussels (paired t-test for means: t = 2.29, P = 0.07 for δ13C; t = 2.19, P = 0.08 for δ15N, where we subtracted 3.4% from the δ13C of snails and mussels to remove the expected one trophic level of enrichment.

In each lake, we collected all fish species that were likely to feed at the top of the food web. Because trophic position can increase with fish length, we collected adult fish of each species and held length as constant as possible across the lake size gradient. The fish species collected and the lengths of fish analysed were: largemouth bass (Micropterus salmoides); 230–440 mm, smallmouth bass (Micropterus dolomieu); 250–450 mm, northern pike (Esox lucius); 450–840 mm, chain pickerel (Esox nigricans); 700–900 mm, brook trout (Salvelinus fontinalis); 410 mm, chinook salmon (Oncorhynchus tshawytscha); 800–1000 mm, rainbow trout (Oncorhynchus mykiss); 480 mm, Atlantic salmon (Salmo salar); 450–720 mm, and brown trout (Salmo trutta); 310–610 mm. Snails and mussels were collected from each lake between late July and early September each year. Most fish were collected in late July to October, but for a few lakes we used fish collected in June. We used total phosphorus from integrated epilimnetic water samples taken in late July or August as an index of lake productivity. Our range of total phosphorus (2.6 to 230 μg l−1) corresponds to a range of primary productivity of 30–450 g C m−2 yr−1 (ref. 29). We previously used documented volume estimates for 21 of our lakes. For the remaining four lakes, we estimated lake area as a hyperbolic sinusoid: 0.43 × area × maximum depth. We took a small section of muscle tissue from each fish for isotopic analysis. Snails and mussels were dissected and aggregated, particulate contaminants were removed and only soft tissue was used for isotopic analysis. Samples were dried at 40°C for 48 hrs and ground to a fine powder. We then extracted lipids (using methanol-chloroform extraction) from all animal samples because lipids are depleted in 13C compared with whole organisms27 and lipid content in our tissue samples was variable (ranging from about 5% by mass in largemouth bass to >30% in some lake trout). Stable isotopic analysis was performed using a Europa Geo 20/20 continuous flow isotope ratio mass spectrometer at the Cornell Laboratory for Stable Isotope Analysis. The standard error of the replicates of all our analyses were 0.05% for δ13C and 0.18% for δ15N. All stable-isotope values are reported in the notation: δX = ([(sample–SMOW / SMOW) × 1000] – 1) × 1000, where SMOW is the global standard is atomic nitrogen, and δ13C = ([(sample–CSIA / CSIA) × 1000] + 1) × 1000, where the global standard is PeeDee Belemnite27.

Received 31 January; accepted 26 April 2000.

University of Maryland, Center for Environmental Science, Horn Point Laboratory, PO Box 775, Cambridge, Maryland 21613, USA

Mesodinium rubrum (Lohmann 1908) Jankowski 1976 (= Myrionecta rubra) is a common photosynthetic marine planktonic ciliate which can form coastal red-tides1. It may represent a ‘species complex’2,3 and since Darwin’s voyage on the Beagle, it has been of great cytological, physiological and evolutionary interest4. It is considered to be functionally a phytoplanker because it was thought to have lost the capacity to feed and possesses a highly modified algal endosymbiont5,6. Whether M. rubrum is the result of a permanent endosymbiosis or a transient association between a ciliate and an alga is controversial7. We conducted feeding experiments to determine how exposure to a cryptophyte algae affects M. rubrum. Here we show that although M. rubrum lacks a cytostome (oral cavity), it ingests cryptophytes and steals their organelles, and may not maintain a permanent endosymbiont.